APLICAÇÃO DAS ABORDAGENS INTEGRAL E DIFERENCIAL À ANÁLISE DE DESEMPENHO DE QUEIMADORES DE FORNOS PETROQUÍMICOS

Marcos Noboru Arima
Instituto de Pesquisas Tecnológicas / Divisão de Mecânica e Eletricidade / Agrupamento de Engenharia Térmica - Av. Prof. Almeida Prado 532 - 05508-901 São Paulo, SP Brasil
mnoboru@ipt.br

Guenther Carlos Krieger Filho
Escola Politécnica / Universidade de São Paulo / Departamento de Engenharia Mecânica - Av. Prof. Mello Moraes, 2231 - 05508-900 São Paulo, SP Brasil
guenther@usp.br

Resumo. O objetivo deste trabalho é aplicar as abordagens integral e diferencial à análise de desempenho de um determinado conjunto de queimador e forno petroquímico. Estas abordagens foram aplicadas a diversas condições operacionais que incluíram variações de: excesso de ar e número de “swirl”. Somente os aspectos relativos à câmara de combustão foram considerados neste trabalho. Portanto, os fenômenos que ocorrem no interior dos tubos foram excluídos. O modelo integral adotado neste trabalho foi o de 1 Zona de Gás de Hotte1 (Hotte1 and Sarofim, 1965; Hotte1, 1974). O código diferencial utilizado foi o do programa de dinâmica dos fluidos computacional (CFD) FLUENT 5.5. O caso estudado corresponde ao da formalha da HTFS / NEL (Beltagi1 et al., 1988; Kenbar et al., 1995; Kenbar et al., 1993; Beltagi1 et al., 1999). Além dos dados experimentais desta formalha, os dados experimentais de um modelo isotérmico também foram utilizados (Beltagi1 et al., 1988b; Beltagi1 et al., 1988a). Utilizando estes dados como referência, os modelos diferenciais e integrais foram analisados. A principal conclusão deste trabalho foi que o modelo integral representa a taxa de calor transferida para a parede melhor do que o modelo diferencial.

Palavras_chave: forno, queimador, swirl, combustão, CFD

1. Introdução

Este trabalho tem como motivação a crescente demanda que o Agrupamento de Engenharia Térmica do IPT vem recebendo no sentido de melhorar o desempenho dos fornos petroquímicos. Estes equipamentos são formados por câmaras de combustão de paredes refratárias, havendo na frente destas paredes, ou no centro da câmara, fileiras de tubos por onde escoa a carga a ser aquecida. Um dos principais parâmetros de desempenho de um determinado conjunto de queimador e forno petroquímico é a taxa de calor total possível de ser transmitida para a carga deste. Esta taxa de calor total é limitada por um valor de temperatura máxima admissível para os tubos que, por sua vez, é limitada pela taxa de coqueificação máxima admissível e/ou pela resistência mecânica dos tubos. Os fenômenos que determinam o perfil de temperatura ao longo dos tubos de um forno petroquímico podem ser divididos entre os processos (i) internos aos tubos, carga; e os (ii) externos aos tubos, câmara de combustão. Neste trabalho, serão estudados apenas os processos pertencentes ao grupo (ii). Os processos deste grupo dependem fundamentalmente das configurações geométricas e dimensões do queimador e da câmara de combustão, assim como, dos parâmetros de operação do queimador, por exemplo: combustível utilizado, potência fornecida, excesso de ar, e número de “swirl”.

Outro exemplo da necessidade de determinação do perfil de temperatura ao longo dos tubos é a definição do posicionamento dos “skin-points”, que são termopares responsáveis pelo monitoramento da temperatura da superfície externa dos tubos. Os “skin-points” deveriam, em princípio, ser instalados na posição na qual o pico do perfil de temperatura dos tubos está localizado.

O objetivo deste trabalho é aplicar as abordagens integral e diferencial à análise de desempenho de um determinado conjunto de queimador e forno petroquímico. Obtendo, assim, indicações a respeito da confiabilidade destas abordagens, suas faixas de aplicação e informações que podem fornecer.
2. Caso Estudado

2.1. Equipamentos Ensaiados

O caso estudado é o da formalha de testes da HTFS/NEL, cujos aparatos e resultados experimentais e de simulação numérica estão descritos nas referências (Beltagui et al., 1988c; Beltagui et al., 1999; Kenbar et al., 1995; Kenbar et al., 1993). Esta formalha é composta por uma câmara cilíndrica vertical com 1 m de diâmetro interno e 3 m de altura. As paredes desta formalha são constituídas por seis camisas d'água que permitem a medição do fluxo líquido de calor total (radiação + convecção) fornecido a cada camisa. O combustível utilizado nesta formalha foi o gás natural. Além das medições realizadas nesta formalha, também foram realizadas medições em um modelo isotérmico em escala reduzida, conforme relatado nas referências (Beltagui et al., 1988b; Beltagui et al., 1988a). As dimensões do queimador deste modelo são as mesmas do queimador da formalha real. O diâmetro da câmara do modelo isotérmico é 480 mm e seu comprimento é 1800 mm. Esta configuração de modelo isotérmico em escala reduzida foi obtida através da aplicação do critério de Thring and Newby, 1952.

A Figura (1) mostra, esquematicamente, as configurações da formalha da HTFS/NEL e do queimador utilizado.

![Diagrama da formalha de testes da HTFS/NEL](image)

Figura 1: Formalha de teste da HTFS / NEL.

2.2. Condições de Operação

A Tabela (1) mostra as condições nominais de operação dos casos reativos, assim como suas respectivas siglas de identificação. Os dados experimentais utilizados no presente trabalho para a análise do caso isotérmico referem-se às seguintes condições operacionais: (i) passagem de ar de combustão operando com ar a uma vazão de 0,17 kg/s; (ii) passagem de gás combustível operando com ar a uma vazão de 0,0125 kg/s; (iii) número de "swirl" na passagem do ar de combustão no valor nominal de 2,25.

<table>
<thead>
<tr>
<th>Número de "swirl"</th>
<th>Potência fornecida (kW)</th>
<th>Excesso de ar (%)</th>
<th>Sigla</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>400</td>
<td>5</td>
<td>CH000 400 05</td>
</tr>
<tr>
<td>0,45</td>
<td>400</td>
<td>20</td>
<td>CH045 400 20</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>5</td>
<td>CH045 400 05</td>
</tr>
</tbody>
</table>
3. Aplicação dos Modelos

3.1. Método Numérico

Foi utilizado o código FLUENT 5.5 para a solução do modelo diferencial. Este código utiliza o método dos volumes finitos. As opções oferecidas por este código adotadas neste trabalho foram: (i) método de solução numérica: solução sequencial das equações fundamentais; (ii) acoplamento pressão-velocidade: SIMPLE; (iii) discretização espacial: “Quick”; (iv) discretização temporal e número de Courant (CFL): não utilizados devido à condição de regime permanente simulada. O manual do usuário do código FLUENT 5.5 (Fluent Incorporated, 1999) apresenta maiores detalhes a respeito destas opções. As Figuras (2) e (3) apresentam, respectivamente, os esquemas de malhas utilizadas nas simulações dos casos isotérmicos e reativos. Estas malhas foram construídas objetivando (i) o alinhamento das linhas de corrente em relação às faces das células; e (ii) o aumento do refinamento da malha nas regiões com maiores gradientes. Para o caso isotérmico, são apresentados os dados referentes às malhas identificadas pelos códigos 1a e 2 que são formadas, respectivamente, por 19.690 e 78.760 volumes. A malha 1a dos casos reativos é formada por 22.680 volumes. Deve-se ressaltar que, além das malhas mostradas neste trabalho, foram testados outros padrões e refinamentos de malha, incluindo malhas estruturadas, não estruturadas, e adaptadas com o auxílio das ferramentas disponíveis no código FLUENT. De todas as malhas testadas, as apresentadas neste trabalho, malhas estruturadas por partes, foram as que obtiveram independência com o menor número de volumes. Outra constatação obtida por meio dos testes de independência da malha realizados é que o refinamento da malha na região da parede afeta o valor da velocidade axial na linha de centro da câmara. Isto ocorre devido ao fato do escoamento reverso adjacente às paredes ser determinado pelos seguintes fenômenos: (i) difusão de quantidade de movimento na saída do bloco difusor; e (ii) tensão de cisalhamento na parede. Devido a isto, o cálculo da vazão de escoamento reverso e, por continuidade, do escoamento na região do jato, dependem do cálculo da tensão de cisalhamento na parede que, por sua vez, é executado utilizando funções de parede.

![Figura 2: Esquema de distribuição dos volumes das malhas dos casos isotérmicos.](image1)

![Figura 3: Esquema de distribuição dos volumes das malhas dos casos reativos.](image2)

3.2. Condições de Contorno

Os perfis de velocidades axial e tangencial na superfície de entrada do ar de combustão foram admitidos como sendo lineares. A velocidade radial foi admitida nula. A Figura (4) ilustra as variáveis que definem
estes perfis e a Tab. (2) mostra os valores destas variáveis para cada caso estudado. As condições de contorno de turbulência nesta superfície foram estimadas por meio das seguintes equações: energia cinética turbulenta, \(k = 0,03 U^2 \); e taxa de dissipação de energia cinética turbulenta, \(\epsilon = k^{3/2}/(0,0025 D_h) \), onde, \(U \) é a velocidade axial média na seção de entrada e \(D_h \) é o diâmetro hidráulico da passagem do escoamento.

![Perfil de velocidade axial e tangencial na superfície de entrada de ar de combustão.](image)

Figura 4: Ilustração dos perfis de velocidades axial e tangencial na superfície de entrada de ar de combustão.

<table>
<thead>
<tr>
<th>Caso</th>
<th>(U1) (m/s)</th>
<th>(U2) (m/s)</th>
<th>(W1) (m/s)</th>
<th>(W2) (m/s)</th>
<th>(S) (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C225)</td>
<td>16,94</td>
<td>16,94</td>
<td>10</td>
<td>40</td>
<td>1,26</td>
</tr>
<tr>
<td>(CH045.400.05)</td>
<td>16,64</td>
<td>16,64</td>
<td>5,895</td>
<td>5,895</td>
<td>0,25</td>
</tr>
<tr>
<td>(CH000.400.05)</td>
<td>16,45</td>
<td>16,45</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>(CH000.400.20)</td>
<td>18,85</td>
<td>18,85</td>
<td>0</td>
<td>0</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Foi adotada pressão estática absoluta de 101,325 kPa na borda da superfície de saída de gases. A pressão estática no interior da superfície de saída foi calculada conforme a seguinte equação: \(\partial p/\partial r = \rho w^2/r \) onde, \(\rho \) é a pressão estática, \(r \) é a coordenada radial, \(\rho \) é a massa específica e \(w \) é a velocidade tangencial.

3.3. Modelos Fenomenológicos

O modelo integral adotado neste trabalho foi o de 1 Zona de Gás de Hottel (Hottel and Sarofim, 1965; Hottel, 1974). O código diferencial utilizado foi o do programa de dinâmica dos fluidos computacional (CFD) FLUENT 5.5. Foram testados os modelos de turbulência para números de Reynolds elevados \(k - \epsilon \) std, \(k - \epsilon \) rls, \(k - \epsilon \) rng e tensões de Reynolds, respectivamente, (Lauder, B.E. and Spalding, D.B., 1972; Shih et al., 1995; Choudhury, 1993; Gilsdon and Lauder, 1978) apud. Fluent Incorporated, 1999. Estes modelos apresentaram resultados muito semelhantes para os casos com número de “swirl” nominal 0,0 e 0,45. Nos casos com número de “swirl” nominal 2,25, somente o modelo \(k - \epsilon \) std atingiu a convergência e a independência da malha. Portanto, os resultados de simulação CFD apresentados neste trabalho referem-se apenas ao modelo \(k - \epsilon \) std. As constantes utilizadas nos modelos de turbulência testados são apresentadas na Tab. 3.

Neste trabalho, foi utilizada a abordagem baseada na fração de mistura / \(\beta \)-PDF para a modelagem das interações entre o escoamento turbulento e as reações químicas. A reação química foi modelada adotando a hipótese de equilíbrio químico, Jones and Whitelaw, 1982 apud. Fluent Incorporated, 1999. Isto é, as reações químicas são consideradas suficientemente rápidas de forma que a condição de equilíbrio químico sempre existe. As espécies consideradas neste modelo foram: \(N_2 \), \(O_2 \), \(H_2O \), \(CO_2 \), \(CH_4 \), \(C_2H_6 \), \(C_3H_8 \), \(C_4H_10 \), \(C_5H_{12} \), \(CO \), \(OH \), \(H_2 \), \(H \) e \(C \).

O modelo de radiação utilizado foi o de ordenadas discretas, DO, Chui and Raithby, 1993 apud. Fluent Incorporated, 1999, com coeficientes de absorvidade calculados através do modelo de somas de gases cinzentos, WSGGM, no qual apenas os gases \(CO_2 \) e \(H_2O \) foram considerados participantes. A discretização angular nas
díreas polar e azimutal foram, respectivamente, \(N_\theta = 2 \) e \(N_\varphi = 2 \); e o fracionamento angular nas direções polar e azimutal foram, respectivamente, \(N_{\theta,p} = 3 \) e \(N_{\varphi,p} = 3 \). Deve-se ressaltar que a modelagem do coeficiente de absorvidade segundo WSGGM implementada no código FLUENT não simula o comportamento de um gás real. Isto decorre do fato da absorvidade do gás, \(\alpha \), ser considerada igual à emissividade do gás, \(\varepsilon \), condição verdadeira apenas em sistemas com temperatura uniforme. Para que o modelo WSGGM simule o comportamento de um gás real, é necessário calcular a absorvidade do gás baseada na temperatura do emissor de radiação e a emissividade baseada na temperatura local do gás. Esta abordagem foi adotada nas referências (Arima, 1998; Sousa and Arima, 1998). Apesar desta simplificação, o modelo de radiação implementado no código FLUENT deve ser suficiente para modelar o sistema estudado. Isto decorre da argumentação de Hotell and Cohen, 1965. Se a temperatura da parede é muito menor que a temperatura do gás, a determinação da absorvidade com base na temperatura do gás causará erros no cálculo da potência emitida pelas paredes e absorvida pelo gás. No entanto, esta potência é muito pequena em relação à potência emitida pelo gás e absorvida pelas paredes e pelo gás. Desta forma, o erro líquido das trocas de calor por radiação é pequeno.

<table>
<thead>
<tr>
<th>Modelo de Turbulência</th>
<th>Sigla</th>
<th>Constantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k - \epsilon) std</td>
<td>ke</td>
<td>(C_1 = 1,44) (\sigma_k = 1,00) (\sigma_\varepsilon = 1,30) (Sc = 0,7)</td>
</tr>
<tr>
<td>(k - \epsilon) rlz</td>
<td>rlz</td>
<td>(C_1 = 1,44) (C_2 = 1,9) (\sigma_k = 1,00)</td>
</tr>
<tr>
<td>(k - \epsilon) rng</td>
<td>rng</td>
<td>(C_1 = 1,42) (C_2 = 1,68) (C_\mu = 0,0845)</td>
</tr>
<tr>
<td>transporte das tensões de</td>
<td>rsm</td>
<td>(C_1 = 1,44) (C_2 = 1,92) (C_\mu = 0,09)</td>
</tr>
</tbody>
</table>

Tabela 3: Modelos de turbulência testados.

4. Resultados e Análise

4.1. Casos Isotérmicos

A Figura (5) apresenta os resultados de simulação (ke1a e ke2) e experimentais (exp, exp.n e exp.p) dos perfis de velocidades axial e tangencial do caso C225 em um plano interno ao bloco, -20 mm à montante da saída deste. Por meio desta figura, é possível perceber que os resultados simulados estão muito próximos dos experimentais. No entanto, isto não significa que o modelo \(k - \epsilon \) std é adequado para representar a turbulência neste plano. A análise da equação de transporte de quantidade de movimento escrita em termos de médias de Reynolds, \(\partial_t U_i + U_j \partial_j U_i = -(1/p) \partial_i P + \partial_j \left[\nu (\partial_j U_i + \partial_i U_j) - \nu \tilde{u}_i u_j \right] \), permite justificar esta dúvida. Se o termo \(\partial_j \tilde{u}_i u_j \) for muito pequeno em relação aos demais, tem-se que o perfil de velocidade é pouco dependente do modelo de turbulência utilizado. Desta forma, a avaliação da qualidade do modelo \(k - \epsilon \) std necessita de medições dos perfis experimentais de \(u_i u_j \). Alternativamente, seria possível obter uma avaliação qualitativa da importância da turbulência sobre os perfis de velocidade por meio da comparação entre o perfil de velocidade obtido de uma simulação de escoamento potencial e os perfis de velocidades medidos.

A Figura (6) apresenta os resultados de simulação (ke1a e ke2) e experimentais (exp, exp.n e exp.p) dos perfis de velocidades axial e tangencial do caso C225 em um plano ao longe, 1.000 mm à jusante da saída do bloco. Diferentemente do plano interno ao bloco, o plano ao longe apresenta discrepâncias em relação aos perfis de velocidades. Os perfis de velocidades axial e tangencial simulados apresentam-se mais suaves que os medidos nas proximidades do eixo axial. Ou seja, a simulação superestimou a difusividade turbulenta nesta região, causando assim, a diluição do déficit de quantidade de movimento. Utilizando o critério de Rayleigh apud Gupta, A.K. and Lilley, D.G. and Syred, N., 1984 de que o escoamento é estável se \(\rho u \) for crescente em relação ao raio, \(r \), tem-se que a difusividade turbulenta de quantidade de movimento deve ser pequena nesta região. Justificando assim, a preservação do perfil de velocidade axial. O perfil de velocidade tangencial simulado no plano ao longe apresenta um padrão de vórtices forçados. O que não corresponde ao perfil medido, que é semelhante a um vórtice de Rankine.

A análise apresentada no parágrafo anterior para as discrepâncias dos perfis de velocidade no plano ao longe representa, apenas, uma hipótese simplificada para o problema existente. Uma análise completa deveria incluir outros efeitos que ainda não são completamente conhecidos qualitativa e/ou quantitativamente, tais
como: (i) taxas de deformações extras: curvatura de linha de corrente e gradiente da velocidade tangencial; (ii) forças inerciais: Coriolis e centrífuga; (iii) não-equilíbrio: entre produção e dissipação e entre as escalas da turbulência; e (iv) interação entre as diversas zonas de um escoamento complexo: recirculações interna e externa, camada fina, expansão, vórtices forçado e livre, e parede. A influência destes efeitos sobre os termos de redistribuição e de dissipação da equação de transporte de tensões de Reynolds ou nos termos de correção dos modelos híbridos, ainda é objeto de muita pesquisa. A análise e modelagem destes efeitos tem se baseado nos tensores anisotropia $a_{ij} = \frac{\overline{u_i u_j}}{k} - (2/3)\delta_{ij}$ e dissipação $\epsilon_{ij} = \nu \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i}$, assim como, nos seus invariantes (Hanjalic, 1994; Ha Minh, 1999; Jovanovic' et al., 2003). Esta análise não está inclusa no escopo do presente trabalho. Mas, tem sido o objeto de pesquisa do doutorado de um dos presentes autores (Arina, M.N.), cuja metodologia segue o modelamento por zonas, conforme defendido por Kline, 1981.

![Graph 1](https://via.placeholder.com/150)

Figura 5: Perfiles de velocidades axial e tangencial do caso C225, plano $x = -20 \text{ mm}$.
4.2. Casos Reativos

Por meio da Tab. (4) é possível observar que o valor experimental da eficiência térmica, \(\eta_{t,exp} \), dos casos \(CR000_400_05 \) e \(CR000_400_20 \), diminui com a elevação do excesso de ar. Esta tendência da eficiência térmica também é descrita pelo modelo de 1 Zona de Gás, \(\eta_{r,1Zn} \). No entanto, as simulações que utilizaram o modelo diferencial, apresentaram um aumento no valor da eficiência térmica, \(\eta_{t,Flu} \), com a elevação do excesso de ar. Este erro de tendência apresentado pelo modelo diferencial ocorre devido a uma superestimativa da importância das trocas de calor por convecção em relação às trocas de calor por radiação. Além deste erro de tendência, o modelo diferencial apresentou erros de predição da eficiência térmica superiores aos do modelo de 1 Zona de Gás. Com base nestas constatações, é possível afirmar que, para a variável eficiência térmica, o modelo de 1 Zona de Gás é mais preciso que o modelo diferencial utilizado. Esta precisão deve-se à simplicidade da metodologia de ajuste existente para o modelo de 1 Zona de Gás de Hottel, 1974.

A Figura (7) mostra que os perfis simulados de fluxo de calor total líquido transferido para as paredes, \(\dot{Q}'_{r_c,k_c1} \), para os casos \(CR000_400_05 \) e \(CR045_400_05 \), apresentam valores de pico superiores aos dos perfis medidos \(\dot{Q}'_{r_c,exp} \). Além disto, a posição do valor de pico do perfil simulado para o caso \(CR045_400_05 \) é diferente da
posição de pico medida. Ou seja, o modelo diferencial não foi capaz de prever corretamente os efeitos da introdução de “swirl” no escoamento. As causas para a deficiência do modelo diferencial em considerar os efeitos de “swirl” no caso CR045_400_05 são, em grande parte, as mesmas associadas às simulações do caso C225. A partir destas constatações, é possível afirmar que o modelo diferencial utilizado não é capaz de prever o perfil de fluxo de calor transferido para a parede. Um projeto de forno petroquímico baseado apenas nas simulações do modelo diferencial iria subestimar a capacidade de produção real do forno. Ou, o que seria mais grave sob o ponto de vista da segurança, iria indicar um posicionamento incorreto para o “skin-point”.

<table>
<thead>
<tr>
<th>Caso</th>
<th>(\eta_{\text{exp}}) (%)</th>
<th>(\eta_{\text{Flu}}) (%)</th>
<th>(\eta_{\text{LZn}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR000_400_05 kela</td>
<td>63,7</td>
<td>66,8</td>
<td>63,5</td>
</tr>
<tr>
<td>CR000_400_20 kela</td>
<td>61,0</td>
<td>71,3</td>
<td>60,9</td>
</tr>
<tr>
<td>CR045_400_05 kela</td>
<td>65,8</td>
<td>67,2</td>
<td>66,3</td>
</tr>
</tbody>
</table>

Figura 7: Perfis de fluxo de calor líquido transferido para as camisas d’água.

5. Conclusão

O objetivo deste trabalho, aplicar as abordagens integral e diferencial à análise do desempenho de um determinado conjunto de queimador e forno petroquímico, foi satisfeito. A análise dos resultados de simulações do forno HTFS/NEL deixa claro que o comportamento da taxa de calor transferida para as paredes da formalha em função do número de “swirl” e do excesso de ar é melhor descrito pelo método integral do que pelo diferencial.
Isto deve-se, principalmente, pela existência de um procedimento de ajuste bem estabelecido para o método integral. O que não estava disponível no caso do código FLUENT utilizado.

A confiabilidade da abordagem integral para a predição da taxa de calor transferida para as paredes da forma, constatada para os casos específicos deste trabalho, pode ser generalizada para outros casos. Esta afirmação baseia-se no fato de que este método é antigo, conforme pode ser verificado através do trabalho de Hottel and Sarofim, 1965, e suficientemente testado por projetistas de fontes petroquímicas. A equipe do IPT/AET, também possui um histórico de utilização deste método que confirma a sua confiabilidade.

Os erros da taxa e de perfil do fluxo de calor transferido para as paredes da forma constatada, neste trabalho, para a abordagem diferencial não podem ser generalizadas. Esta avaliação é restrita aos modelos e às condições de operação do conjunto de queimador e forno analisados. Para a generalização desta afirmação, seria necessário um número de publicações elevado com escopo e conclusão semelhantes ao do presente trabalho. Isto não ocorre pelos seguintes motivos: (i) não existem critérios suficientemente bem estabelecidos que caracterizem os problemas de combustão industrial de acordo com as necessidades de uma abordagem diferencial; e (ii) o espaço amostral das informações a respeito da confiabilidade das ferramentas CFD é extremamente viciado por trabalhos que apresentam apenas os resultados que estão de acordo com os dados experimentais.

A caracterização dos problemas de combustão industrial de acordo com as necessidades de uma abordagem diferencial pode ser dividida nas seguintes partes: (i) transferência de calor por radiação: suficientemente caracterizada pelos adimensionais do modelo de 1 Zona de Gás de Hottel; (ii) transporte de quantidade de movimento, massa e energia através do escoamento: caracterizado de forma insuficiente pelo critério de Thring and Newby, 1952, Becker et al., 1962 e número de Swirl, S; e (iii) fenômenos de reação e acoplamento reação turbulência: possível de ser avaliada apenas após a avaliação do transporte de quantidade de movimento, massa e energia.

Considerando que a determinação do campo de velocidades é necessária para a obtenção dos campos de fração de mistura e, por consequência, dos campos de concentração de espécies, de temperaturas e de fluxo de calor, tem-se que a caracterização do transporte de quantidade de movimento é a primeira restrição para o desenvolvimento da abordagem diferencial. Assim sendo, tem-se como sugestão de continuidade deste trabalho, as seguintes alternativas, não excluintes, de abordagens: (i) aperfeiçoamento dos critérios de Thring and Newby, 1952, Becker et al., 1962 e número de Swirl, S; e (ii) utilização da modelagem zonal, conforme defendido por Kline, 1981.

6. Referências

Fluent Incorporated, 1999, FLUENT 5 Documentation.
APPLICATION OF THE INTEGRAL AND DIFFERENTIAL APPROACHES TO THE ANALYSIS OF PERFORMANCE OF A FIRED FURNACE BURNER

Marcos Noboru Arima
Institute for Technological Research / Mechanical and Electrical Engineering Division / Thermal Engineering Group - Av. Prof. Almeida Prado 532 - 05508-901 São Paulo, SP Brazil
mnoboru@ipt.br

Guenther Carlos Krieger Filho
University of São Paulo / Polytechnic School / Department of Mechanical Engineering- Av. Prof. Mello Morais, 2231 - 05508-900 São Paulo, SP Brazil
guenther@usp.br

Abstract. The aim of this paper is to apply the integral and differential approaches to the analysis of performance of a specific set of burner and fired furnace. These approaches were applied to several operational conditions that included variations of: excess air and swirl number. Only the aspects related to the combustion chamber were considered in this work. Therefore, the phenomena inside the tubes were excluded. The integral model adopted in this work was the Hotell's 1 Zone Gas (Hotell and Sárofin, 1965; Hotell, 1974). The differential code used was the computational fluid dynamics (CFD) program FLUENT 5.5. The studied case corresponds to the HTFS/NEl furnace, (Beltagui et al., 1988; Kenbar et al., 1993; Kenbar et al., 1998; Beltagui et al., 1999). Besides the experimental data of this furnace, experimental data of an isothermal model were also utilized (Beltagui et al., 1988b; Beltagui et al., 1988a). Using these data as reference, the differential and integral models was analyzed. The main conclusion of this work was that the integral model predict the wall heat flux better than the differential model.

Keywords: furnace, burner, swirl, combustion, CFD.